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Abstract The extended sphericity indices of k-cycles, which
were defined in Part 2 of this series (S. Fujita, Theor Chem
Acc, Online: http://www.springerlink. com/index/10.1007/
s00214-004-0606-z) according to the enantiospheric, homo-
spheric, or hemispheric nature of each k-cycle, are further
extended to prove more general theorems for enumerating
nonrigid stereoisomers with rotatable ligands. One of the ex-
tended points is the use of different sets of sphericity indices
to treat one or more orbits contained in skeletons and ligands.
Another is to take account of chirality in proligands and sub-
proligands, the latter of which are introduced to consider
further inner structures of ligands. Two theorems for enu-
merating nonrigid stereoisomers are proved by adopting two
schemes of their derivation, i.e., the scheme “positions of a
skeleton ⇐ proligands ⇐ ligands (positions of a ligand ⇐
sub-proligands)” and the scheme “(positions of a skeleton ⇐
proligands ⇐ ligands (positions of a ligand)) ⇐ sub-proli-
gands”. The theorems are applied to the stereoisomerism of
trihydroxyglutaric acids. Thereby, it is demonstrated where
Pólya’s theorem and other previous methods are deficient,
when applied to the enumeration of stereoisomers.

Keywords Cycle index · Chirality fittingness · Extended
sphericity index · Isomer enumeration · Nonrigid
stereoisomer

1 Introduction

The enumeration of the stereoisomers of trihydroxyglutar-
ic acid (HOOC–CHOH–CHOH–CHOH–COOH) has been a
representative problem which has required the detailed con-
sideration of geniuses in the history of stereochemistry [1–3].
This problem was solved intuitively so that there existed two
achiral molecules (1 and 2) and a pair of enantiomers (3 and
3) (Fig. 1). The achiral molecules (1 and 2) were recognized
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as “pseudoasymmetry”, which required an exceptional treat-
ment, as described in [4]. However, the problem has repelled
systematic mathematical approaches although there appeared
several pioneering studies. For example, Ugi et al. [5] applied
their procedure based on the concept of chemical identity
group to solve this problem. Although their procedure was
straightforward, such a chemical identity group was not so
easy in general to obtain as a concrete form, where, for exam-
ple, the chemical identity group for trihydroxyglutaric acids
was a permutation group of degree 8 and of order 18. More-
over, their approach was inadequate to treat comprehensively
stereoisomers other than trihydroxyglutaric acids, because it
did not take explicit account of inner structures of ligands,
e.g., chirality/achirality of ligands.

Another promising mathematical approach to solve the
problem is Fujita’s USCI (unit-subduced-cycle-index) ap-
proach [6], in which different figure-inventories are used
in the enumeration of isomers derived from nonrigid parent
molecules. Although the USCI approach is versatile to give
symmetry-itemized enumeration, necessary mark tables and
USCI tables are not so easy to obtain. If the problems at issue
do not require symmetry-itemization, methods simpler than
the USCI approach would be desirable.

To solve such problems that require no symmetry-item-
ization, Pólya’s theorem and Pólya’s corona [7,8] have been
used as a further promising mathematical approach. How-
ever, it was pointed out in a previous book [9] that they are
insufficient to deal with chemical structures (or stereoisom-
ers) in which both achiral and chiral ligands are taken into
consideration.

As a more succinct method, Fujita [10,11] has devel-
oped the proligand method that is based on the concepts of
proligand and promolecule, where sphericity indices (SIs) are
used to solve such problems that take account of both achi-
ral and chiral (pro)ligands. Although this method can solve
enumeration problems, several essential improvements are
necessary to properly solve problems like as the isomer enu-
meration of trihydroxyglutaric acids.

In this paper, Fujita’s proligand method [10,11] will be
extended to enable using different sets of sphericity indices
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Fig. 1 Two achiral 2,3,4-trihydroxyglutaric acids (1 and 2) and a pair
of enantiomers (3 and 3)

(SIs), so that two equivalence classes of positions are discrim-
inated to accommodate different sets of ligands. In addition,
further inner structures of the ligands will be considered in
terms of sub-proligands so as to give several theorems for
solving more complicated problems. After these extensions,
the extended Fujita’s proligand method will be applied to
solve the enumeration problem of trihydroxyglutaric acids.

2 Enumeration of nonrigid isomers via promolecules

2.1 Enumeration of promolecules

Let Ĝ be a sum of coset representations (CRs) of a point
group G, which governs a set O of n̂ positions of a skeleton.
Suppose that a permutation G (∈ Ĝ) is represented by the
following equation:

G =
{

g (for a proper permutation)
g (for an improper permutation)

where

g =
( · · · x(α)1 x

(α)
2 · · · x(α)i · · · x(α)r · · ·

· · · x(α)1′ x
(α)
2′ · · · x(α)i ′ · · · x(α)r ′ · · ·

)

︸ ︷︷ ︸

g(α)

(1)

g =
( · · · x(α)1 x

(α)
2 · · · x(α)i · · · x(α)r · · ·

· · · x(α)1′ x
(α)
2′ · · · x(α)i ′ · · · x(α)r ′ · · ·

)

︸ ︷︷ ︸

g(α)

(2)

The permutation g is called “a proper permutation” because
it corresponds to a proper rotation of the point group G,
while the permutation g(α) is called “an improper permu-
tation” because it corresponds to an improper rotation of the
point group G. The n̂ positions of O are occupied by a set
of proligands. The overbar represents the inversion of the
chirality of each proligand.

A CR selected from Ĝ is represented by the symbol Ĝ
(α)

,
which governs an orbit Oα (⊂ O). For the sake of simplicity,

the representation Ĝ
(α)

is regarded as a permutation group
which governs r(α) positions contained in the orbit:

Oα = {x(α)1 , x
(α)
2 , . . . , x

(α)
i , . . . , x(α)r }.

Thus, we place
⋃

α Oα = O. Let us select a permutationG(α)

from a group Ĝ
(α)

as follows:

G(α) =
{

g(α) (for a proper permutation)
g(α) (for an improper permutation)

where

g(α) =
(
x
(α)
1 x

(α)
2 · · · x(α)i · · · g(α)r

x
(α)
1′ x

(α)
2′ · · · x(α)i ′ · · · x(α)r ′

)

(3)

g(α) =
(
x
(α)
1 x

(α)
2 · · · x(α)i · · · x(α)r

x
(α)
1′ x

(α)
2′ · · · x(α)i ′ · · · x(α)r ′

)

, (4)

where r(α) is abbreviated to r .The permutationg(α) is a proper
permutation that corresponds to a proper rotation of the point
group G, while the permutation g(α) is an improper permu-
tation that corresponds to an improper rotation of the point
group G. Note that α runs so thatG(α) coversG (∈ Ĝ). The r
positions of Oα are occupied by a set of proligands. The over-
bar represents the inversion of the chirality of each proligand
if the proligand is chiral.

Suppose that the cycle structure of G(α) (∈ Ĝ
(α)
) is rep-

resented by

[1µ1(G)2µ2(G) · · · rµr (G)](α),
where

∑r
k=1 kµk(G) = r . Note that G(α) is simply repre-

sented by G and the superscript (α) of r(α) is omitted for
the sake of simplicity. Each of the k-cycles corresponds to a
sphericity index (SI) $k (or an extended sphericity index (eSI)
ψ($)k), which is represented by ak , ck , or bk (or ψ(a)k , ψ(c)k ,
orψ(b)k) according to the following sphericity of the k-cycle:

Homospheric k-cycle: The sphericity index (SI) $k is ak if
G (and also G(α)) corresponds to an improper element
and k is odd [10]. When we take account of extended
sphericity indices (eSIs) [11], we use the eSI ψ(a)k in
place of the usual SI ak .

Enantiospheric k-cycle: The SI $k is ck ifG (and alsoG(α))
corresponds to an improper element and k is even [10].
When we take account of eSIs [11], we use the eSI ψ(c)k
in place of the usual SI ck .

Hemispheric k-cycle: The SI $k is bk if G (and also G(α))
corresponds to a proper element [10]. When we take ac-
count of eSIs [11], we use the eSI ψ(b)k in place of the
usual SI bk .



Use of different sets of sphericity indices 39

Hence, the elementG corresponds to a product of sphericity
indices (PSI):

[$µ1(G)
1 $µ2(G)

2 · · · $µr(G)r ](α),

or a product of extended sphericity indices (PeSIs):

[ψµ1(G)

($)1 ψ
µ2(G)

($)2 · · ·ψµr(G)

($)r ](α).

Following Fujita’s proligand method [11], a cycle index with
chirality fittingness (CI-CF) for the present case is defined as
follows:

CI-CF(Ĝ; $k) = 1

|Ĝ|
∑

G∈Ĝ

∏

α

[$µ1(G)
1 $µ2(G)

2 · · · $µr(G)r ](α),

(5)

where α runs so thatG(α) coversG and where the symbol $k
(for k = 1, 2, . . . , r) represents the SI ak , ck , or bk .

Because an achiral promolecule or a pair of enantiomeric
promolecules is enumerated as one promolecule (one stereo-
isomer) under the action of Ĝ, the consideration of Eq. 5
gives Theorem 1. Theorem 1 for enumerating stereoisomers
has essentially the same meaning as described for the enumer-
ation of stereoisomers (Theorem 1 of [10]) and stereoisomers
having rotatable ligands (Theorem 1 of [11]). However, the
present theorem takes account of the orbits (Oα) contained
in the skeleton.

Theorem 1 (Enumeration of Promolecules) Let Ĝ be a
sum of CRs of a point group, which governs a set O of n̂
positions of a given skeleton. Suppose that the cycle struc-

ture of each CR (Ĝ
(α)
) is represented by

(1µ1(G)2µ2(G) · · · sµr (G))(α),
where

∑r
k=1 kµk(H) = r . Each position of Oα governed by

Ĝ
(α)

is occupied by an achiral or chiral proligand selected
from a set of proligands,

X(α) = {X1,X2, . . . ,Xn;
p1, p2, . . . , pn′ ; p1, p2, . . . , pn′ }, (6)

where n and n′ are non-negative integers and where each
Xj represents an achiral proligand and each pair of pj and
pj represents an enantiomeric pair of chiral proligands. Al-
though each proligand contained in X(α) depends on the orbit
Oα , note that the dependence is omitted for the sake of sim-
plicity. Consider isomers having θ1 of X1, θ2 of X2, . . . , θn of
Xn; θ ′

1 of p1, θ ′
2 of p2, . . . , θ ′

n′ of pn′; and θ ′′
1 of p1, θ ′′

2 of p2,
. . . θ ′′

n′ of pn′ , where the partition [θ(α)] satisfies the following
equation:

[θ(α)] : θ1 + θ2 + · · · + θn

+θ ′
1 + θ ′

2 + · · · + θ ′
n′

+θ ′′
1 + θ ′′

2 + · · · + θ ′′
n′ = r. (7)

Since the partition [θ(α)] depends on the orbit Oα , we place
[θ ] = [. . . , θ (α), . . . ] for the sake of simplicity. Let the sym-
bolMθ denote the number of such isomers (promolecules) as

having [θ ] under the action of Ĝ (via Ĝ
(α)

), where achiral iso-
mers and enantiomeric pairs are enumerated combinatori-
ally. A generating function for calculatingMθ is represented
by
∑

[θ ]

Mθ

∏

α

[Xθ1
1 · · · Xθn

n p
θ ′

1
1 · · · p

θ ′
n′
n′ p

θ ′′
1

1 · · · p
θ ′′
n′
n′ ](α)

= CI-CF(Ĝ; $k), (8)

where the summation is concerned with all of the partitions
([θ ]) shown in Eq. 7 and the right-hand side is given by Eq. 5.
The SIs $k in the CI-CF are ligand inventories replaced by

ak = Xk
1 + Xk

2 + · · · + Xk
m, (9)

ck = Xk
1 + Xk

2 + · · · + Xk
m

+2pk/21 pk/21 + 2pk/22 pk/22 + · · · + 2pk/2n pk/2m′ , (10)

bk = Xk
1 + Xk

2 + · · · + Xk
m

+pk1 + pk2 + · · · + pkm′ + pk1 + pk2 + · · · + pkm′ . (11)

where the dependence on the orbit (Oα) is omitted for the
sake of simplicity.

Example 1 (Enumeration of Promolecules Derived from a
C2v-Skeleton. An Example of Theorem 1)

To treat trihydroxyglutaric acids, let us consider a skele-
ton (4) of C2v-symmetry, whose positions are represented by
O = {x1, x2, x3, x4} as shown in Fig. 2. These positions are
permuted as follows:

{(1)(2)(3)(4), (1 2)(3 4), (1)(2)(3 4), (1 2)(3)(4)},
where the locants of the positions only are shown for the sake
of simplicity. Note that these permutations, each of which is
represented as a product of cycles, correspond to the symme-
try operations of the point group C2v (= {I, C2, σ, σ

′}) and
that each permutation with an overbar expresses an improper
permutation (∼ σ or σ ′). This permutation representation is
represented by a sum of CRs: Ĝ = 2C2v(/Cs):

Ĝ
(1) = C2v(/Cs)

(1) = {(1)(2), (1 2), (1)(2), (1 2)}
Ĝ
(2) = C2v(/Cs)

(2) = {(3)(4), (3 4), (3 4), (3)(4)} (12)

Fig. 2 A skeleton of C2v-symmetry
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Table 1 Orbits (Oα), CRs and Sphericity Indices (SIs) and Products of
SIs (PSIs) for the Skeleton 4

Symmetry operation O1 O2 O1 + O2

CR SI CR SI PSI

I (1)(2) b2
1 (3)(4) b2

1 (b
(1)
1 )2(b

(2)
1 )2

C2 (1 2) b2 (3 4) b2 (b
(1)
2 )(b

(2)
2 )

σ (1)(2) a2
1 (3 4) c2 (a

(1)
1 )2(c

(2)
2 )

σ ′ (1 2) c2 (3)(4) b2
1 (c

(1)
2 )(a

(2)
1 )2

Accordingly, the four positions of 4 are divided into a sum
of two orbits O1 + O2 (α = 1, 2), where O1 (= {x1, x2}) is
governed by the CR Ĝ

(1)
and O2 (= {x3, x4}) is governed by

the CR Ĝ
(2)

.
To apply Eq. 5 to the present case of 4, sphericity indices

(SIs) are assigned to the k-cycles contained in each permuta-
tion. The results are summarized in Table 1, where the PSIs
are calculated by the SIs.

From the PSIs listed in the rightmost column of Table 1,
the CI-CF (Eq. 5) for the present case is calculated as follows:

CI-CF(C2v; $k) = 1

4

{

(b
(1)
1 )2(b

(2)
1 )2 + (b

(1)
2 )(b

(2)
2 )

+ (a
(1)
1 )2(c

(2)
2 )+ (c

(1)
2 )(a

(2)
1 )2

}

(13)

Suppose that the two positions of the orbit O1 accommo-
date two proligands which are selected from a set of proli-
gands:

X(1) = {X1,X2, p1, p2, p1, p2}, (14)

where X1 and X2 represent achiral proligands and a pair of
pi and pi (i = 1, 2) represents an enantiomeric pair of chiral
ligands. And suppose that the two positions of the orbit O2
accommodate two proligands which are selected from a set
of proligands:

X(2) = {X̂1, X̂2} (15)

where X̂1 and X̂2 represent achiral proligands.
The ligand inventories (Eqs. 9–11) for the orbit O1 are

calculated to give

a
(1)
k = Xk

1 + Xk
2 (16)

c
(1)
k = Xk

1 + Xk
2 + 2pk/21 pk/21 + 2pk/22 pk/22 (17)

b
(1)
k = Xk

1 + Xk
2 + pk1 + pk2 + pk1 + pk2 (18)

On the other hand, the ligand inventories (Eqs. 9–11) for the
orbit O2 are calculated to give

a
(2)
k = c

(2)
k = b

(2)
k = X̂k

1 + X̂k
2 (19)

By following Theorem 1, the sets of the ligand invento-
ries (Eqs. 16–19) are introduced into the CI–CF (Eq. 13). The
expansion of the resulting equation produces the following
generating function:

F = [2p1p1X̂1X̂2 + · · · ] + [X1X2X̂1X̂2]

+
[

2

2
(X1p1X̂1X̂2 + X1p1X̂1X̂2)+ · · ·

]

+
[

2

2
(p1p2X̂1X̂2 + p1p2X̂1X̂2)+ · · ·

]

+ [p1p1X̂2
1 + · · · ]

+ [X1X2X̂2
1 + · · · ]

+
[

1

2
(X1p1X̂2

1 + X1p1X̂2
1)+ · · ·

]

+
[

1

2
(p1p2X̂2

1 + p1p2X̂2
1)+ · · ·

]

+
[

X2
1X̂1X̂2 + X2

2X̂1X̂2

]

+
[

1

2
(p2

1X̂1X̂2 + p2
1X̂1X̂2)+ · · ·

]

+
[

X2
1X̂2

1 + X2
2X̂2

1 + · · ·
]

+
[

1

2
(p2

1X̂2
1 + p2

1X̂2
1)+ · · ·

]

, (20)

which is the concrete expression of Eq. 8 (Theorem 1) for the
present case.

Among the terms appearing in the generating function
(Eq. 20), the term 2p1p1X̂1X̂2 corresponds to the two achiral
trihydroxyglutaric acids (1 and 2), which are diastereomeric
to each other. Note that the pair of p1 and p1 are replaced by
R- and S-CH(OH)COOH, and we place X̂1 = H and X̂2 =
OH. The coefficient 2 of the term shows the presence of the
two isomers along with the absence of other isomers of this
formula. On the other hand, the term 1

2 (p
2
1X̂1X̂2 + p2

1X̂1X̂2)

corresponds to a pair of enantiomers (3 and 3), where the pair
is counted once by regarding the term as a unit term. ��

2.2 Enumeration of achiral and chiral ligands

Each of the proligands is replaced by a ligand of a point
group H. Let Ĥ be a sum of CRs of the point group H, which
governs a set � of m̂ positions of the ligand. Suppose that a
permutation H (∈ Ĥ) is represented by the following equa-
tion:

H =
{

h (for a proper permutation)
h (for an improper permutation)

where

h =
( · · · y(β)1 y

(β)

2 · · · y(β)i · · · y(β)s · · ·
· · · y(β)1′ y

(β)

2′ · · · y(β)i ′ · · · y(β)s ′ · · ·
)

︸ ︷︷ ︸

h(β)

(21)

h =
( · · · y(β)1 y

(β)

2 · · · y(β)i · · · y(β)s · · ·
· · · y(β)1′ y

(β)

2′ · · · y(β)i ′ · · · y(β)s ′ · · ·
)

︸ ︷︷ ︸

h
(β)

(22)
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The permutation h is a proper permutation, while the per-
mutation h is an improper permutation. The m̂ positions of
� are occupied by a set of objects (atoms, achiral ligands,
or further proligands in general). The overbar represents the
inversion of the chirality of each objects.

Since such objects can be regarded as a nested kind of
proligands subordinate to ligands, they are here called “sub-
proligands” in order to differentiate them from the proligands
described above. Thereby, the substitution step “positions
of a skeleton ⇐ proligands” is contrasted with the subor-
dinate substitution step “positions of a ligand ⇐ sub-proli-
gands”, where the two steps in the total scheme “positions of
a skeleton ⇐ proligands ⇐ ligands (positions of a ligand ⇐
sub-proligands)” can be treated in a mathematically common
framework.

A CR selected from Ĥ is represented by the symbol Ĥ
(β)

,
which governs an orbit�β (⊂ �). For the sake of simplicity,

the representation Ĥ
(β)

is regarded as a permutation group,
which governs s positions contained in the orbit:

�β = {y(β)1 , y
(β)

2 , . . . , y
(β)

j , . . . , y(β)s }. (23)

Thus, we place
⋃

β �β = �. The s positions of the ligands
are occupied by a set of sub-proligands (i.e., such objects as
atoms, achiral ligands, or further proligands). These positions

are governed by the CR (Ĥ
(β)

) represented by

H(β) =
{

h(β) (for a proper permutation)

h
(β)

(for an improper permutation)

where

h(β) =
(

y
(β)

1 y
(β)

2 . . . y
(β)

j . . . y
(β)
s

y
(β)

1′ y
(β)

2′ . . . y
(β)

j ′ . . . y
(β)

s ′

)

(24)

h
(β) =

(

y
(β)

1 y
(β)

2 . . . y
(β)

j . . . y
(β)
s

y
(β)

1′ y
(β)

2′ . . . y
(β)

j ′ . . . y
(β)

s ′

)

(25)

Let the element H(β) be represented by a cycle decom-
position involving the number νd(H) of d-cycles so as to
satisfy

∑s
d=1 dνd(H) = s. Each of the d-cycles corresponds

to an SI $d , which is represented by ad , cd , or bd accord-
ing to the sphericity of the d-cycle. Hence, the elementH(β)

corresponds to a product of sphericity indices (PSI) [$ν1(H)
1

$ν2(H)
2 · · · $νs (H)s ](β). Following Fujita’s proligand method

[11], a cycle index with chirality fittingness (CI–CF) for the
present case is defined as follows:

CI–CF(Ĥ; $d) = 1

|Ĥ|
∑

H∈Ĥ

∏

β

[$ν1(H)
1 $ν2(H)

2 · · · $νs (H)s ](β),(26)

where $d is ad , cd , or bd according to the sphericity of the
corresponding d-cycle.

When the H is an achiral point group, there exists the
maximum chiral subgroup H′, the order of which is equal
to the half of the order of H. Let Ĥ

′
be a sum of CRs of

the maximum chiral subgroup of H′ of H. Then the sum (Ĥ
′
)

contains proper rotations represented by h (Eq. 21). Each CR

(Ĥ
′(β)

) contains proper rotations represented by h(β) (Eq. 24).

Then, by following Fujita’s proligand method [11], a cy-
cle index with chirality fittingness (CI–CF) for the present
case is defined as follows:

CI–CF(Ĥ
′; bd) = 1

|Ĥ′|
∑

H∈Ĥ
′

∏

β

[bν1(H)
1 b

ν2(H)
2 · · · bνs(H)s ](β),

(27)

where only one SI bd appears because Ĥ
′

contains proper
permutations but no improper permutations.

Because an achiral ligand or a pair of enantiomeric lig-
ands is enumerated as one ligand under the action of Ĥ
(if achiral), the consideration of Eq. 26 gives Theorem 2.
Theorem 2 for enumerating ligands has essentially the same
meaning as described for the enumeration of stereoisomers
(Theorem 1 of [10]) and stereoisomers having rotatable lig-
ands (Theorem 1 of [11]). However, the present theorem takes
account of the orbits (�β) contained in the ligand.

Theorem 2 (Enumeration of ligands under the action of
a point group) Let Ĥ be a sum of CRs of a point group H,
which is an achiral or chiral group and governs a set� of m̂

positions of such a given ligand as described above. Let Ĥ
(β)

be a CR contained in the sum Ĥ, where the Ĥ
(β)

governs the
orbit �β (Eq. 23) and β runs to cover Ĥ. Suppose that the

cycle structure of each permutation of Ĥ
(β)

is represented by

(1ν1(H)2ν2(H) · · · sνs(H))(β),
where

∑s
d=1 dνd(H) = s. Each position of �β governed

by Ĥ
(β)

is occupied by an achiral or chiral sub-proligand
selected from a set of sub-proligands,

Y(β) = {Y1,Y2, . . . ,Ym;
q1, q2, . . . , qm′ ; q1, q2, . . . , qm′ }, (28)

wherem andm′ are non-negative integers and where each Yj

represents an achiral sub-proligand and each pair of qj and
qj represents an enantiomeric pair of chiral sub-proligands.
Note that, although each sub-proligand contained in Y(β)

depends on the orbit �β , the dependence is omitted for the
same of simplicity. Consider isomers having ρ1 of Y1, ρ2 of
Y2, . . . , ρm of Ym; ρ ′

1 of q1, ρ ′
2 of q2, . . . , ρ ′

m′ of qm′; and
ρ ′′

1 of q1, ρ ′′
2 of q2, . . . ρ ′′

m′ of qm′ , where the partition [ρ(β)]
satisfies the following equation:

[ρ(β)] : ρ1 + ρ2 + · · · + ρm

+ρ ′
1 + ρ ′

2 + · · · + ρ ′
m′

+ρ ′′
1 + ρ ′′

2 + · · · + ρ ′′
m′ = s. (29)

Since the partition [ρ(β)] depends on the orbit �β , we place
[ρ] = [. . . , ρ(β), . . . ] for the sake of simplicity. Let the sym-
bolBρ denote the number of such ligands as having [ρ] under

the action of Ĥ (via Ĥ
(β)
), where achiral ligands and enan-

tiomeric pairs are enumerated combinatorially. A generating
function for calculating Bρ is represented by
∑

[ρ]

Bρ
∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′

1
1 · · · q

ρ ′
m′
m′ q

ρ ′′
1

1 · · · q
ρ ′′
m′
m′ ](β)

= CI–CF(Ĥ; $d), (30)
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where the summation is concerned with all of the partitions
([ρ]) shown in Eq. 29 and the right-hand side is given by
Eq. 26. The SIs $d in the CI–CF are ligand inventories re-
placed by

ad = Yd
1 + Yd

2 + · · · + Yd
m, (31)

cd = Yd
1 + Yd

2 + · · · + Yd
m

+2qd/21 qd/21 + 2qd/22 qd/22 + · · · + 2qd/2m′ qd/2m′ , (32)

bd = Yd
1 + Yd

2 + · · · + Yd
m

+qd1 + qd2 + · · · + qdm′ + qd1 + qd2 + · · · + qdm′ . (33)

where the dependence on the orbit (�β) is omitted for the
sake of simplicity.

Although the proof of this theorem is omitted, it can be done
in a similar manner to Theorem 1 of [10] and Theorem 1 of
[11]. It should be noted that the inventories ad (Eq. 31), cd
(Eq. 32), and bd (Eq. 33) are used if H (or Ĥ) is achiral, while
the inventory bd (Eq. 33) only is used if H (or Ĥ) is chiral.

Example 2 (Enumeration of isomeric ligands derived from
a methyl skeleton under the action of the point group C3v .
an example for Theorem 2) Because the three positions of
the methyl ligand (� = {y1, y2, y3}) are governed by the CR
C3v(/Cs):

C3v(/Cs) = {(1)(2)(3), (1 2 3), (1 3 2);
(1)(2 3), (2)(1 3), (3)(1 2)}, (34)

where each overbar shows that the permutation is accompa-
nied by the inversion of the chirality of a ligand so as to be
an improper permutation. In this case, Eq. 26 is calculated as
follows:

CI–CF(C3v; $d) = 1

6
(b3

1 + 3a1c2 + 2b3)

= 1

6
b3

1 + 1

2
a1c2 + 1

3
b3. (35)

Suppose that each position of � is occupied by an achiral
or chiral sub-proligand selected from a set of sub-proligands
(cf. Eq. 28):

Y = {Y1,Y2,Y3;
q1, q2, q3; q1, q2, q3}, (36)

Then, Eqs. 31, 32, and 33 are applied to the present case so
as to give the following ligand inventories:

ad = Yd
1 + Yd

2 + Yd
3 , (37)

cd = Yd
1 + Yd

2 + Yd
3

+2qd/21 qd/21 + 2qd/22 qd/22 + 2qd/23 qd/23 , (38)

bd = Yd
1 + Yd

2 + Yd
3

+qd1 + qd2 + qd3 + qd1 + qd2 + qd3 . (39)

These inventories are introduced into the CI–CF (Eq. 35),
which is expanded to give the following generating function:

f = [Y3
1 + Y3

2 + Y3
3] + [

Y2
1Y3 + Y2

1Y2 + · · · ]+ Y1Y2Y3

+
[

1

2
(Y2

1q1 + Y2
1q1)+ · · ·

]

+
[

2

2
(Y1Y2q1 + Y1Y2q1)+ · · ·

]

+
[

1

2
(Y1q2

1 + Y1q2
1)+ · · ·

]

+ [
2Y1q1q1 + · · · ]

+
[

2

2
(Y1q1q2 + Y1q1q2)+ · · ·

]

+
[

2

2
(Y1q1q2 + Y1q1q2)+ · · ·

]

+
[

1

2
(q3

1 + q3
1)+ · · ·

]

+
[

1

2
(q2

1q1 + q1q2
1)+ · · ·

]

+
[

1

2
(q2

1q2 + q2
1q2)+ · · ·

]

+
[

1

2
(q2

1q2 + q2
1q2)+ · · ·

]

+
[

2

2
(q1q2q3 + q1q2q3)

]

+
[

2

2
(q1q2q3 + q1q2q3)+ · · ·

]

+
[

2

2
(q1q1q2 + q1q1q2)+ · · ·

]

(40)

The coefficient of each term gives the Bρ of Eq. 30 (The-
orem 2). ��

When the H is an achiral point group, investigations on
the action of its maximum chiral subgroup H′ are the next
target. Because an achiral ligand or each chiral ligand of
a enantiomeric pair is enumerated as one ligand under the
action of Ĥ

′
, the consideration of Eq. 27 gives Theorem 3.

Theorem 3 (Enumeration of ligands under the action of
the maximum chiral subgroup) Suppose that the conditions
of Theorem 2 hold true. Let us consider the maximum chiral
subgroup H′ of the point group H, when the H described in
Theorem 2 is achiral. Let the symbolB ′

ρ denote the number of

such ligands as having [ρ] under the action of Ĥ
′
(via Ĥ

′(β)
),

where achiral ligands and chiral ligands (both enantiomeric
ligands) are enumerated combinatorially. A generating func-
tion for calculating B ′

ρ is represented by
∑

[ρ]

B ′
ρ

∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′

1
1 · · · q

ρ ′
m′
m′ q

ρ ′′
1

1 · · · q
ρ ′′
m′
m′ ](β)

= CI–CF(Ĥ
′; bd), (41)

where the summation is concerned with all of the partitions
([ρ]) shown in Eq. 29 and the right-hand side is given by
Eq. 27. The SI bd in the CI–CF is a ligand inventory replaced
by

bd = Yd
1 + Yd

2 + · · · + Yd
m

+qd1 + qd2 + · · · + qdm′ + qd1 + qd2 + · · · + qdm′ . (42)
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where the dependence on the orbit (�β) is omitted for the
sake of simplicity.

Although the proof of this theorem is omitted, it can be
done in a similar manner to Theorem 1 of [10] and Theorem
1 of [11].

Example 3 (Enumeration of isomeric ligands derived from
a methyl skeleton under the action of the point group C3. an
example for Theorem 3) As a continuation of Example 2, let
us consider proper permutations among C3v(/Cs), i.e.,

C3(/C1) = {(1)(2)(3), (1 2 3), (1 3 2)} (43)

In this case, Eq. 27 is calculated as follows:

CI–CF(C3; bd) = 1

3
(b3

1 + 2b3)

= 1

3
b3

1 + 2

3
b3. (44)

The same set of sub-proligands as Y (Eq. 36) is used again
so that the ligand inventory bd (Eq. 42) is calculated to be
Eq. 39, which is introduced into the CI–CF (Eq. 44), which
is expanded to give the following generating function:

g = [Y3
1 + Y3

2 + Y3
3] + [

Y2
1Y3 + Y2

1Y2 + · · · ]+ 2Y1Y2Y3

+
[

1

2
(Y2

1q1 + Y2
1q1)+ · · ·

]

+
[

4

2
(Y1Y2q1 + Y1Y2q1)+ · · ·

]

+
[

2

2
(Y1q2

1 + Y1q2
1)+ · · ·

]

+ [
2Y1q1q1 + · · · ]

+
[

4

2
(Y1q1q2 + Y1q1q2)+ · · ·

]

+
[

4

2
(Y1q1q2 + Y1q1q2)+ · · ·

]

+
[

2

2
(q3

1 + q3
1)+ · · ·

]

+
[

2

2
(q2

1q1 + q1q2
1)+ · · ·

]

+
[

2

2
(q2

1q2 + q2
1q2)+ · · ·

]

+
[

2

2
(q2

1q2 + q2
1q2)+ · · ·

]

+
[

4

2
(q1q2q3 + q1q2q3)

]

+
[

4

2
(q1q2q3 + q1q2q3)+ · · ·

]

+
[

4

2
(q1q1q2 + q1q1q2)+ · · ·

]

(45)

The coefficient of each term gives the B ′
ρ of Eq. 41 (The-

orem 3). ��
Since Eq. 30 gives the number of achiral ligands (A) plus

enantiomeric pairs (C), we can place A + C = CI–CF(Ĥ; $d).
Since Eq. 41 gives the number of achiral ligands (A) plus
chiral ligands (C) plus their enantiomeric ligands (C), we
can place A + 2C = CI–CF(Ĥ

′; bd). Then we have C = CI–CF

(Ĥ
′; bd)− CI–CF(Ĥ; $d) and A = 2CI–CF (Ĥ; $d)− CI–CF

(Ĥ
′; bd).
Let us examine the term appearing in Eqs. 30 and 41.

pρ =
∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′

1
1 · · · q

ρ ′
m′
m′ q

ρ ′′
1

1 · · · q
ρ ′′
m′
m′ ](β) (46)

Although this term can represent an achiral or chiral ligand,
it is here presumed to represent a chiral one, i.e., ρ ′

j �= ρ ′′
j (∃j

when j = 1, 2, . . . , m′). Then, the term corresponding to its
enantiomeric ligand is represented by the following term.

pρ =
∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′′

1
1 · · · q

ρ ′′
m′
m′ q

ρ ′
1

1 · · · q
ρ ′
m′
m′ ](β) (47)

Because both p and p appear in the summation of Eq. 30, the
C (one enantiomeric pair of ligands) of Eq. 30 corresponds
to the term represented by a combination of enantiomeric
molecular formulas:
1

2
(pρ + pρ). (48)

On the other hand, 2C (one chiral ligand and its enantiomeric
ligand) of Eq. 41 corresponds to the terms represented by
enantiomeric molecular formulas:

pρ + pρ. (49)

Hence, the C obtained by Eq. 49 minus Eq. 48, which is
equal to Eq. 48, represents the number of enantiomeric pairs.
It follows that we obtain the following theorem by starting
from Theorems 2 and 3.

Theorem 4 (Enumeration of achiral ligands and enumer-
ation of chiral ligands) Suppose that the conditions of The-
orems 2 and 3 hold true. Let the symbol Aρ denote the num-
ber of achiral isomeric ligands of such isomers as having
[ρ] (Eq. 29). Let the symbol Cρ denote the number of enan-
tiomeric pairs of chiral isomeric ligands having [ρ] (Eq. 29).
Generating functions for calculating Aρ and Cρ are repre-
sented by
∑

[ρ]

Aρ
∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′

1
1 · · · q

ρ ′
m′
m′ q

ρ ′′
1

1 · · · q
ρ ′′
m′
m′ ](β)

= 2CI–CF(Ĥ; $d)− CI–CF(Ĥ
′; bd) (50)

∑

[ρ]

Cρ
∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′

1
1 · · · q

ρ ′
m′
m′ q

ρ ′′
1

1 · · · q
ρ ′′
m′
m′ ](β)

= CI–CF(Ĥ
′; bd)− CI–CF(Ĥ; $d) (51)

where the summation is concerned with all of the partitions
([ρ]) shown in Eq. 29 and the right-hand sides are derived
from Eqs. 26 and 27. The SIs $d in the CI–CF are ligand
inventories replaced by ad (Eq. 31), cd (Eq. 32), and bd (Eq.
33), where the dependence on the orbit (�β) is omitted for
the sake of simplicity.

It should be noted that Eq. 51 contains a pair of enantiomeric
ligands in a form of Eq. 48.
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Example 4 (Enumerations of achiral and chiral isomeric lig-
ands derived from a methyl skeleton. an example for Theorem
4) As a continuation of Examples 2 and 3, Eq. 50 of Theo-
rem 4 is applied to the enumeration of achiral ligands derived
from a methyl ligand. Thus, by starting from f of Eq. 40 and
g of Eq. 45, we obtain the following generating function:

2f − g = [Y3
1 + Y3

2 + Y3
3] + [Y2

1Y3 + Y2
1Y2 + · · · ]

+[2Y1q1q1 + · · · ] (52)

The coefficient of each term gives the Aρ of Eq. 50 (Theo-
rem 4).

On the other hand, Eq. 51 of Theorem 4 is applied to the
enumeration of chiral ligands derived from a methyl ligand.
Thus, by starting from f of Eq. 40 and g of Eq. 45, we obtain
the following generating function:

g − f = Y1Y2Y3 +
[

1

2
(Y2

1q1 + Y2
1q1)+ · · ·

]

+
[

2

2
(Y1Y2q1 + Y1Y2q1)+ · · ·

]

+
[

1

2
(Y1q2

1 + Y1q2
1)+ · · ·

]

+
[

2

2
(Y1q1q2 + Y1q1q2)+ · · ·

]

+
[

2

2
(Y1q1q2 + Y1q1q2)+ · · ·

]

+
[

1

2
(q3

1 + q3
1)+ · · ·

]

+
[

1

2
(q2

1q1 + q1q2
1)+ · · ·

]

+
[

1

2
(q2

1q2 + q2
1q2)+ · · ·

]

+
[

1

2
(q2

1q2 + q2
1q2)+ · · ·

]

+
[

2

2
(q1q2q3 + q1q2q3)

]

+
[

2

2
(q1q2q3 + q1q2q3)+ · · ·

]

+
[

2

2
(q1q1q2 + q1q1q2)+ · · ·

]

(53)

The coefficient of each term gives the Cρ of Eq. 51 (The-
orem 4). ��

2.3 Enumeration of nonrigid isomers

Among the total scheme “positions of a skeleton ⇐ proli-
gands ⇐ ligands (positions of a ligand ⇐ sub-proligands)”,
the two substitution steps “positions of a skeleton ⇐ proli-
gands” and “positions of a ligand ⇐ sub-proligands” have
been discussed in the preceding subsections. We are now

ready to discuss the remaining step “proligands ⇐ ligands”
so as to discuss enumeration of nonrigid isomers.

Let us return to CI–CF(Ĝ; $k) (Eq. 5), where the proli-
gands are replaced by ligands enumerated by Theorem 4. For
the sake of simplicity, the term Xρ for achiral ligands and the
term pρ for chiral ligands are placed as follows:
∏

β

[Yρ1
1 · · · Yρm

m q
ρ ′

1
1 · · · q

ρ ′
m′
m′ q

ρ ′′
1

1 · · · q
ρ ′′
m′
m′ ](β)

=
{

Xρ for ρ ′
j = ρ ′′

j (j = 1, 2, . . . , m′).
pρ othewise

(54)

Note that the term pρ of Eq. 54 covers pρ of Eq. 46 and pρ of
Eq. 47 when [ρ] covers the partition represented by Eq. 29.
According to the sphericity of each k-cycle, chirality fitting-
ness [12] teaches that a homospheric orbit accommodates
achiral ligands only (i.e., Xρ of Eq. 54) an enantiospher-
ic obit accommodates chiral ligands (i.e., pρ or pρ of Eq.
54) in a compensated chiral packing (i.e., a pairwise pack-
ing) as well as achiral ligands, and a hemispheric orbit freely
accommodates achiral and chiral ligands. The ligand invento-
ries (Eqs. 9–11) for Theorem 1 are replaced by the following
inventories:

âk =
∑

[ρ]

AρXk
ρ (55)

= 2CI–CF(Ĥ; $kd)− CI–CF(Ĥ
′; bkd) (56)

ĉk =
∑

[ρ]

AρXk
ρ + 2

∑

[ρ]

Cρpk/2ρ pk/2ρ (57)

b̂k =
∑

[ρ]

AρX
k
ρ + 2

∑

[ρ]

Cρpkρ (58)

= CI–CF(Ĥ
′; bkd) , (59)

where Xρ and pρ (pρ) are represented by Eq. 54. It should
be noted that the term pk/2pk/2 in ĉk appears twice when [ρ]
covers the partition represented by Eq. 29. and that the term
pk automatically appears in b̂k when [ρ] covers the partition
represented by Eq. 29. The SIs (âk , ĉk , b̂k) in the left-hand side
of Eqs. 55, 57, and 58 are SIs for a skeleton, while $kd (i.e.,
akd , ckd , and bkd ) and bkd in the right-hand side of Eqs. 56
and 59 are SIs for ligands. The two types of SIs are differen-
tiated for the sake of rigor, although they are mathematically
equivalent.

The ligand inventories represented by Eqs. 55, 57, and
58 are introduced into Eq. 8 of Theorem 1 to generate a gen-
erating function for enumerating nonrigid isomers. Thereby,
Theorem 1 is rewritten to be a slightly different format, where
CI–CF(Ĝ; $k) (Eq. 81) is used to replace the proligands by
the ligands enumerated by Theorem 4. The summation ap-
pearing in the left-hand side of Eq. 8 now contains terms
corresponding to sub-proligands of Y(β) (Eq. 36).

The power of each term can be determined by the parti-
tions [θ ] (Eq. 7) and [ρ] (Eq. 29) so that these are rewritten
into a partition represented by

[	(α,β)] : 	1 +	2 + · · · +	m +	′
1 +	′

2 + · · · +	′
m′

+	′′
1 +	′′

2 + · · · +	′′
m′ = rs. (60)
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Thereby, the molecular formula of the resulting nonrigid
isomer is calculated to be
∏

α

∏

β

[Y	1
1 · · · Y	m

m q
	′

1
1 · · · q

	′
m′

m′ q
	′′

1
1 · · · q

	′′
m′

m′ ](α,β)

(61)

where the symbol (α, β) shows the dependence of each term
in the molecular formula. When Oα and �β run to cover O
and �, we place a partition [	] as follows:

[	] :





· · · · · · · · ·
· · · [	(α,β)] · · ·
· · · · · · · · ·





It follows that Theorem 1 is combined with Theorems 2 and
3 (via Theorem 4) so as to yield the following theorem:

Theorem 5 (Preliminary theorem for enumerating non-
rigid stereoisomers) Suppose that each of the proligands of
X(α) (Eq. 6 in Theorem 1) is substituted by a ligand that is
generated from sub-proligands selected from Y(β) (Eq. 36
in Theorem 2). Let M	 denote the number of nonrigid iso-
mers that have the molecular formula shown in Eq. 61. A
generating function for calculating M	 is represented by
∑

[	]

M	

∏

α

∏

β

[Y	1
1 · · · Y	m

m q
	′

1
1 · · · q

	′
m′

m′ q
	′′

1
1 · · · q

	′′
m′

m′ ](α,β)

= CI–CF(Ĝ; $̂k), (62)

where the CI–CF(Ĝ; $̂k) on the right-hand side is represented
by Eq. 5 after changing $k into $̂k and the $̂k (âk , ĉk , or b̂k)
is replaced by the ligand inventories (Eqs. 55, 57, 58).

Among the inventories used in Theorem 5, the inventories
âk and b̂k (Eqs. 55, 58) are obtained as the generating func-
tions (Eqs. 56, 59), which are in turn calculated by Eq. 26
(Theorem 2) and Eq. 27 (Theorem 3). However, the inven-
tory ĉk (Eq. 57), which corresponds to occupation modes for
enantiospheric orbits, is not expressed in the form of a gen-
erating function. Hence, the next target is to obtain the ĉk as
a generating function.

Compare Eq. 58 for b̂k with Eq. 57 for ĉk . Thereby, one
can find that the term pkρ of Eq. 58 corresponds to the term

pk/2ρ pk/2ρ of Eq. 57, so that a generating function for ĉk can be
obtained by using Eq. 27 (Theorem 3) after adequate modifi-
cation. Thus, Eq. 27 is converted into the following equation:

CI–CF(Ĥ
′; ckd)

= 1

|Ĥ′|
∑

H∈Ĥ
′

∏

β

[cν1(H)
k c

ν2(H)
2k · · · cνs(H)sk ](β), (63)

where each ckd is represented by Eq. 32. Thereby, the follow-
ing lemma is obtained:

Lemma 1 (Enantiospheric occupation modes as generat-
ing functions) The ligand inventory ĉk (Eq. 57) is represented

as a generating function:

ĉk =
∑

[ρ]

AρXk
ρ + 2

∑

[ρ]

Cρpk/2ρ pk/2ρ

= CI–CF(Ĥ
′; ckd), (64)

where CI–CF(Ĥ
′; ckd) is given by Eq. 63 and where each ckd

is represented by Eq. 32 after converting d into kd.

Example 5 (Enantiospheric occupation modes for methyl lig-
ands estimated as generating functions. an example for
Lemma 1)

Lemma 1 is applied to the case of Example 3. Thus, Eq. 44
is converted according to Eq. 64 into the following equation:

ĉ2 = 1

3
c3

2 + 2

3
c6 , (65)

where we place k = 2 and d = 1. The inventories in the right-
hand side of Eq. 65 are replaced by the ligand inventories
derived from Eq. 38 so as to give the following generating
function:

g′ = [
Y6

1 + · · · ]+ [
Y4

1Y2
2 + · · · ]+ [

2Y2
1Y2

2Y2
3

]

+ [2Y4
1q1q1 + · · · ]+ [

4Y2
1Y2

2q1q1 + · · · ]

+ [4Y2
1q2

1q2
1 + · · · ]+ [

8Y2
1q1q1q2q2 + · · · ]

+ [4q3
1q3

1 + · · · ]+ [
8q2

1q2
1q2q2 + · · · ]

+ [16q1q2q3q1q2q3

]
. (66)

The coefficient of each term in the right-hand side of Eq. 66
represents the number of occupation modes for enantiomeric
ligand pairs plus achiral ligand pairs. Each coefficient is con-
firmed in terms of Lemma 1 by combining 2f − g (Eq. 52
for Aρ) and g − f (Eq. 53 for Cρ) given in Example 4. For
example, the term 4Y2

1q2
1q2

1 of Eq. 66 comes from the term
2Y1q1q1 of Eq. 52 (which gives the value 2 because the cor-
responding ligands are achiral) and the term 1

2 (Y1q2
1 +Y1q2

1)
of Eq. 53 (which gives the value 2 because the correspond-
ing ligands are chiral). The coefficient 1 of the term Y4

1Y2
2

indicates the presence of one occupation mode for an achiral
ligand pair: Y2

1Y2/Y2
1Y2, while the coefficient 2 of the term

Y2
1Y2

2Y2
3 indicates the presence of two occupation modes for

a pair of enantiomeric ligands R-Y1Y2Y3/S-Y1Y2Y3. ��
Lemma 1 allows us to rewrite Theorem 5 by using the

ligand inventories represented as generating functions, i.e.,
Eq. 56 (âk), Eq. 64 (ĉk), and Eq. 59 (b̂k). Thereby, we obtain
the following theorem:

Theorem 6 (The first theorem for enumerating nonrigid
stereoisomers) Suppose that each of the proligands of X(α)

(Eq. 6 in Theorem 1) is substituted by a ligand that is gener-
ated from sub-proligands selected from Y(β) (Eq. 36 in The-
orem 2). LetM	 denote the number of nonrigid isomers that
have the molecular formula shown in Eq. 61. A generating
function for calculating M	 is represented by
∑

[	]

M	

∏

α

∏

β

[Y	1
1 · · · Y	m

m q
	′

1
1 · · · q

	′
m′

m′ q
	′′

1
1 · · · q

	′′
m′

m′ ](α,β)

= CI–CF(Ĝ; $̂k), (67)
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where the CI–CF(Ĝ; $̂k) on the right-hand side is represented
by Eq. 5 after changing $k into $̂k and where the $̂k (âk , ĉk ,
or b̂k) is replaced by the ligand inventories (Eqs. 56, 64, 59).
The inventories $kd (akd , ckd , or bkd ) appearing in Eqs. 56,
64, and 59 are represented by Eqs. 31, 32, and 33.

Example 6 (Enumeration of nonrigid isomers having rotat-
able methyl ligands (1). An Example for Theorem 6)

Let us return to the skeleton (4), where the orbit O1 (=
{x1, x2}) accommodates methyl ligands enumerated in Ex-
amples 2, 3, 4, and 5 and the orbit O2 (= {x3, x4}) simply ac-
commodates achiral ligands selected from X(2) (= {X̂1, X̂2}).
As shown in Fig. 3, the six positions due to O1, which are
designated as (y(1)1 ,y(1)2 ,y(1)3 ) and ((y(1)1 )′,(y(1)2 )′, (y(1)3 )′), ac-
commodate the sub-proligands described in Examples 2, 3,
4, and 5. The two positions due to O2, which are designated
as (y(2)1 , (y(2)1 )′), accommodate an achiral sub-proligand Ŷ1

or Ŷ2 in place of the achiral ligands X̂1 or X̂2.
By starting from Eq. 13 of Example 1, we obtain the

following CI–CF:

CI–CF(C2v; $̂k) = 1

4

{

(b̂
(1)
1 )2(b̂

(2)
1 )2 + (b̂

(1)
2 )(b̂

(2)
2 )

+ (â
(1)
1 )2(ĉ

(2)
2 )+ (ĉ

(1)
2 )(â

(2)
1 )2

}

(68)

where $k of Eq. 13 is converted into $̂k .
The inventories $̂k for the orbit O1 are calculated by em-

ploying Eq. 56 for âk , Eq. 64 for ĉk , and Eq. 59 for b̂k .

â
(1)
1 = a

(1)
1 c

(1)
2

= 2f − g (Eq. 52) (69)

ĉ
(1)
2 = 1

3
(c
(1)
2 )3 + 2

3
c
(1)
6

= g′ (Eq. 66) (70)

b̂
(1)
1 = 1

3
(b
(1)
1 )3 + 2

3
b
(1)
3

= g (Eq. 45) (71)

b̂
(1)
2 = 1

3
(b
(1)
2 )3 + 2

3
b
(1)
6 (72)

Fig. 3 A skeleton for generating nonrigid molecules

where the superscript (1) of each sphericity index in the right-
hand side designates the dependence on the orbit O1. Note
that we use Eq. 37 for a(1)d , Eq. 38 for c(1)d , and Eq. 39 for
b
(1)
d and expand the resulting equations to generate the corre-

sponding inventories as generating functions. Some of them
have been already calculated in Examples 4, 5, and 3. The
inventory b̂(1)2 can be obtained in a similar manner to b̂(1)1
(Example 3).

On the other hand, the inventories $̂k for the orbit O2 are
calculated as follows:

â
(2)
1 = a

(2)
1 = Ŷ1 + Ŷ2 (73)

ĉ
(2)
2 = c

(2)
2 = Ŷ2

1 + Ŷ2
2 (74)

b̂
(2)
1 = b

(2)
1 = Ŷ1 + Ŷ2 (75)

b̂
(2)
2 = b

(2)
2 = Ŷ2

1 + Ŷ2
2 (76)

The inventories for O1 (Eqs. 69–72) and the inventories
for O2 (Eqs. 73–76) are introduced into Eq. 68, which is
expanded to give the following generating function:

F = · · · [6Y2
1Y2

2Y2
3Ŷ1Ŷ2 + · · · ] + · · ·

+[5Y2
1Y2

2Y2
3Ŷ2

1 + · · · ] + · · ·
+[12Y2

1Y2
2q1q1Ŷ1Ŷ2 + · · · ] + · · ·

+[8Y2
1Y2

2q1q1Ŷ2
1 + · · · ] + · · · , (77)

where the remaining terms are omitted.
To exemplify enumeration results in which the orbit O1

accommodates achiral sub-proligands only (Y1, Y2, and Y3),
Fig. 4 shows stereoisomers corresponding to the term 6Y2

1Y2
2

Y2
3Ŷ1Ŷ2 in the right-hand side of Eq. 77, where the coeffi-

cient 6 represents two achiral isomers (6 and 7) and four pairs
of enantiomers.

The two achiral isomers (6 and 7) have a so-called “pseudo-
asymmetric carbon”, where p and p represent a pair of a
chiral ligand (S-CY1Y2Y3) and its enantiomeric ligand (R-
CY1Y2Y3). Note that the RS-nomenclature is applied by us-
ing the priority Y1 > Y2 > Y3 >(valence bond). This is a
general case for the two achiral trihydroxyglutaric acids (1
and 2), which are diastereomeric to each other.

The pair of 8 and 8 corresponds to the combined term
1
2 (p

2X̂1X̂2 + p2X̂1X̂2) listed in Eq. 20 of Example 2, where

we place X̂1 = Ŷ1 and X̂2 = Ŷ2 for achiral ligands. This is
a general case for a pair of enantiomeric trihydroxyglutaric
acids (3 and 3), where the pair is counted once by regarding
the term 1

2 (p
2X̂1X̂2 + p2X̂1X̂2) as a unit term.

The other pairs (9/9, 10/10, and 11/11) listed in Fig. 4 con-
tain four achiral ligands which are different from each other.
They correspond to the term X1X2X̂1X̂2 listed in Eq. 20 of
Example 2, where we place, for example, X1 = A = Y2

1Y2,
X2 = B = Y2Y2

3, X̂1 = Ŷ1, and X̂2 = Ŷ2 for the achiral ligands
of the pair 9/9.

To exemplify enumeration results in which the orbit O1
accommodates achiral sub-proligands (Y1 and Y2) and chi-
ral ones (q1 and q1), Figs. 5, 6 and 7 show stereoisomers



Use of different sets of sphericity indices 47

Fig. 4 Stereoisomers (achiral ones and enantiomer pairs) correspond-
ing to the term 6Y2

1Y2
2Y2

3Ŷ1Ŷ2. The coefficient 6 represents two achiral
isomers (6 and 7) and four pairs of enantiomers. The symbols A and
B represent achiral ligands, while p and p represent a pair of a chiral
ligand and its enantiomeric ligand

corresponding to the term 12Y2
1Y2

2q1q1Ŷ1Ŷ2 in the right-hand
side of Eq. 77. The coefficient 12 indicates the presence of
twelve stereoisomers (enantiomeric pairs or achiral isomers).

Fig. 5 Two pairs of enantiomers selected from stereoisomers corre-
sponding to the term 12Y2

1Y2
2q1q1Ŷ1Ŷ2, where the factorization for O1

is Y2
1Y2/Y2q1q1. Another set of two pairs of enantiomers is represented

by the factorization Y1Y2
2/Y1q1q1

Fig. 6 Two pairs of enantiomers selected from stereoisomers corre-
sponding to the term 12Y2

1Y2
2q1q1Ŷ1Ŷ2, where the factorization for O1

is Y2
1q/Y2

2q1 (Y2
2q/Y2

1q1)

Figure 5 shows two pairs of enantiomers selected from
stereoisomers (12/12 and 13/13) corresponding to the factor-
ization into Y2

1Y2/Y2q1q1 for O1. The same situation holds
true for the factorization Y1Y2

2/Y1q1q1, where another set of
two pairs of enantiomers appears. Thus, Fig. 5 totally corre-
sponds to four stereoisomers among the twelve stereoisomers
under the action of the group at issue.
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Fig. 7 Four achiral isomers and two pairs of enantiomers selected from
stereoisomers corresponding to the term 12Y2

1Y2
2q1q1Ŷ1Ŷ2, where the

factorization for O1 is Y1Y2q/Y1Y2q1

Figure 6 shows two pairs of enantiomers selected from
stereoisomers (14/14 and 15/15) corresponding to the factor-
ization into Y2

1q/Y2
2q1 for O1. Thus, Fig. 6 totally corresponds

to two stereoisomers among the twelve stereoisomers under
the action of the group at issue.

Figure 7 shows four achiral isomers (16, 17, 18, and 19)
and two pairs of enantiomers (20/20 and 21/21), which cor-
respond to the factorization into Y2

1q/Y2
2q1 for O1. Thus, Fig.

7 totally corresponds to six stereoisomers among the twelve
stereoisomers under the action of the group at issue.

As a result, the numbers of isomers depicted in Figs. 5,
6, and 7 are summed up to give 2 (+2) + 2 + 6 = 12, which is
equal to the coefficient of the term Y2

1Y2
2q1q1Ŷ1Ŷ2 appearing

in the right-hand side of Eq. 77. ��

3 Enumeration of nonrigid isomers via extended cycle
indices with chirality fittingness

3.1 Extended cycle indices with chirality fittingness

The inventories used in Theorem 6 ($̂k , i.e., âk (Eq. 56), ĉk
(Eq. 64), and b̂k (Eq. 59)) take expanded forms after intro-
ducing $kd (i.e., akd (Eq. 31), ckd (Eq. 32), and bkd (Eq. 33)).
Obviously, the same result can be obtained by the introduc-
tion of unexpanded inventories ($̂k) into Eq. 67 of Theorem
6, where the intermediate cycle index is then expanded after
the introduction of $kd . Such unexpanded forms, which are
called “extended sphericity indices” (eSIs), are represented
by the symbols ψ($)k (i.e., ψ(a)k , ψ(c)k , and ψ(b)k) in place of
$̂k (i.e., âk , ĉk , and b̂k) as follows:

ψ(a)k = 2CI–CF(Ĥ; $kd)− CI–CF(Ĥ
′; bkd) (78)

ψ(c)k = CI–CF(Ĥ
′; ckd), (79)

ψ(b)k = CI–CF(Ĥ
′; bkd) (80)

where CI–CF(Ĥ; $kd) and CI–CF(Ĥ
′; $kd) in the right-hand

side are used in unexpanded forms. In a similar way to the
CI–CF shown in Eq. 5, an extended cycle index with chirality
fittingness (eCI–CF) is defined by using eSIs (Eqs. 78–80)
as follows:
eCI–CF(Ĝ;ψ($)k)

= 1

|Ĝ|
∑

G∈Ĝ

∏

α

[ψµ1(G)

($)1 ψ
µ2(G)

($)2 · · ·ψµr(G)

($)r ](α), (81)

where α runs so that G(α) covers G and where the symbol
ψ($)k (for k = 1, 2, . . . , r) represents the eSI ψ(a)k , ψ(c)k , or
ψ(b)k according to the sphericity of the k-cycle. The interme-
diate cycle index CI–CF′(Ĝ[Ĥ]; $d) is defined as follows:
CI–CF′(Ĝ[Ĥ]; $d) = eCI–CF(Ĝ;ψ($)k), (82)
where the right-hand side is obtained by introducing eSIs
(Eqs. 78–80). Note that the SI $d in the left-hand side is
different from the eSI ψ($)k in the right-hand side.

3.2 Enumeration of nonrigid molecules

In the light of the discussions described above, Theorem 6
can be converted into Theorem 7. The symbol Ĝ represents
a kind of wreath product, where ligands of different groups
can be used as [Ĥ].

Theorem 7 (The second theorem for enumerating non-
rigid stereoisomers) Suppose that each of the proligands of
X(α) (Eq. 6 in Theorem 1) is substituted by a ligand that is
generated from sub-proligands selected from Y(β) (Eq. 36
in Theorem 2). Let M	 denote the number of nonrigid iso-
mers that have the molecular formula shown in Eq. 61. A
generating function for calculating M	 is represented by
∑

[	]

M	

∏

α

∏

β

[Y	1
1 · · · Y	m

m q
	′

1
1 · · · q

	′
m′

m′ q
	′′

1
1 · · · q

	′′
m′

m′ ](α,β)

= CI–CF′(Ĝ[Ĥ]; $d), (83)
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where the CI–CF′(Ĝ[Ĥ]; $d) on the right-hand side is repre-
sented by Eq. 82. The inventories $d (ad , cd , or bd ) appearing
in the right-hand side of Eq. 83 (i.e., in Eqs. 78–80) are rep-
resented by Eqs. 31, 32, and 33.

It should be noted that Theorem 6 stems from the scheme
“positions of a skeleton ⇐ proligands ⇐ ligands (positions
of a ligand ⇐ sub-proligands)”, while Theorem 7 stems from
the scheme “(positions of a skeleton ⇐ proligands ⇐ ligands
(positions of a ligand)) ⇐ sub-proligands”.

Example 7 (Enumeration of nonrigid isomers having rotat-
able methyl ligands (2). An example for Theorem 7)

The same problem as described in Example 6 is solved
by virtue of Theorem 7. In place of Eq. 68 of Example 6,
we obtain the following eCI–CF by applying Eq. 81 to the
present case.

eCI–CF(C2v;ψ($)k)
= 1

4

{

(ψ
(1)
(b)1)

2(ψ
(2)
(b)1)

2 + (ψ
(1)
(b)2)(ψ

(2)
(b)2)

+ (ψ
(1)
(a)1)

2(ψ
(2)
(c)2)+ (ψ

(1)
(c)2)(ψ

(2)
(a)1)

2
}

. (84)

First, we consider the eSIs for methyl ligands (C3v and related
symmetries), which are accommodated in the orbit O1. In
place of Eqs. 69–72 (expanded forms), the following eSIs
(unexpanded forms) are calculated by applying Eqs. 78, 79,
and 80 to the present case:

ψ
(1)
(a)1 = a

(1)
1 c

(1)
2 (85)

ψ
(1)
(c)2 = 1

3
(c
(1)
2 )3 + 2

3
c
(1)
6 (86)

ψ
(1)
(b)1 = 1

3
(b
(1)
1 )3 + 2

3
b
(1)
3 (87)

ψ
(1)
(b)2 = 1

3
(b
(1)
2 )3 + 2

3
b
(1)
6 (88)

where the superscript (1) of each sphericity index in the right-
hand side designates the dependence on the orbitO1. It should
be noted that Eqs. 85–88 have already appeared in the deriva-
tion process of Eqs. 69–72 in Example 6 as expanded forms.

Second, we consider the eSIs for achiral ligands (C∞v and
related symmetries), which are accommodated in the orbit
O2. The eSIs for the orbit O2 are calculated as follows:

ψ
(2)
(a)1 = a

(2)
1 (89)

ψ
(2)
(c)2 = c

(2)
2 (90)

ψ
(2)
(b)1 = b

(2)
1 (91)

ψ
(2)
(b)2 = b

(2)
2 (92)

It follows that Theorem 7 (Eq. 82) gives the intermediate
cycle index as follows:

CI–CF′(C2v[C3v,C∞v]; $d)

= 1

36
(b
(1)
1 )6(b

(2)
1 )2 + 1

9
(b
(1)
1 )3(b

(1)
3 )(b

(2)
1 )2

+1

9
(b
(1)
3 )2(b

(2)
1 )2 + 1

12
(b
(1)
2 )3(b

(2)
2 )

+1

6
(b
(1)
6 )(b

(2)
2 )+ 1

4
(a
(1)
1 )2(c

(1)
2 )2(c

(2)
2 )

+ 1

12
(c
(1)
2 )3(a

(2)
1 )2 + 1

6
(c
(1)
6 )(a

(2)
1 )2 (93)

We use Eq. 37 for a(1)d , Eq. 38 for c(1)d , and Eq. 39 for b(1)d
for O1, while we apply Eqs. 73–76 to Eqs. 89–92 for O2.
They are introduced into Eq. 93, which is expanded to give
the same generating function F as Eq. 77 of Example 6. ��

3.3 Special cases without chiral sub-proligands

Theorem 7 takes account of both achiral sub-proligands and
chiral ones, as found in Y(β) (Eq. 28 of Theorem 2). When
we take account of achiral sub-proligands only, i.e.,

Y′(β) = {Y1,Y2, . . . ,Ym}, (94)

Theorem 7 can be reduced into a simpler format. Under this
condition, the SIs listed in Eqs. 31, 32, and 33 are degenerate
to give the same equation. Thereby, we obtain the following
corollary:

Corollary 1 (Simplified cases in the enumeration of non-
rigid stereoisomers. Corollary for Theorem 7) Suppose
that each of the proligands of X(α) (Eq. 6 in Theorem 1) is
substituted by a ligand that is generated from achiral sub-
proligands selected from Y′(β) (Eq. 94). Let M	 denote the
number of nonrigid isomers that have the molecular formula
shown in Eq. 61, where the terms of chiral sub-proligands are
omitted. A generating function for calculating M	 is repre-
sented by
∑

[	]

M	 ×
∏

α

∏

β

[Y	1
1 · · · Y	m

m ](α,β)

= CI–CF′(Ĝ[Ĥ]; $d), (95)

where the CI–CF′(Ĝ[Ĥ]; $d) on the right-hand side is repre-
sented by Eq. 82. The inventories $d (ad , cd , or bd ) appearing
in the right-hand side of Eq. 95 are represented by

ad = cd = bd = Yd
1 + Yd

2 + · · · + Yd
m (96)

for each Oα .

The degenerate SI (Eq. 96) influences the eSIs (Eqs. 78–
80), which can be rewritten in case of Theorem 1 as follows:

ψ(a)k = 2CI–CF(Ĥ; $kd)− CI–CF(Ĥ
′; bkd) (97)

ψ(c)k = CI–CF(Ĥ
′; bkd), (98)

ψ(b)k = CI–CF(Ĥ
′; bkd). (99)

Obviously, this modification has been used in theorems de-
scribed in Part 2 of the present series [11]. It should be noted
that the replacement of Eq. 79 by Eq. 98 is permitted only if
the three SIs (Eqs. 31–33) coalesce into a single one (Eq. 96)
because of considering achiral sub-proligands only.
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Example 8 (Enumeration of nonrigid stereoisomers aimed
at examining isomeric trihydroxyglutaric acids. An example
for Corollary 1)

The same problem as described in Examples 6 and 7 is
solved by virtue of Theorem 1 under the condition in which
only achiral sub-proligands are considered. We here use the
same eCI–CF(C2v[C3v,C∞v];ψ($)k) (Eq. 84), the same un-
expanded eSIs (Eqs. 85–92), and the same intermediate cycle
index CI–CF′(C2v; $d ) (Eq. 93) as obtained in Example 7.

In Example 7, we have used Eq. 37 for a(1)d , Eq. 38 for
c
(1)
d , and Eq. 39 for b(1)d for the orbit O1 as well as Eqs. 73–

76 for the orbit O2, because we take account of chiral and
achiral sub-proligands. In contrast, we use here the following
inventories:

a
(1)
d = c

(1)
d = b

(1)
d = Yd

1 + Yd
2 + Yd

3 (100)

for the orbit O1 and

a
(2)
d = c

(2)
d = b

(2)
d = Ŷd

1 + Ŷd
2 (101)

for the orbit O2 according to Eq. 96, because the present
case takes account of achiral sub-proligands only. The inven-
tories (Eqs. 100, 101) are introduced into the intermediate CI
(Eq. 93 of Example 7) and the resulting equation is expanded
to give the following generating function,

F ′ = [Y6
1Ŷ2

1 + · · · ] + [Y5
1Y2Ŷ2

1 + · · · ] + [2Y4
1Y2

2Ŷ2
1 + · · · ]

+[2Y4
1Y2Y3Ŷ2

1 + · · · ] + [2Y3
1Y3

2Ŷ2
1 + · · · ]

+[3Y3
1Y2

2Y3Ŷ2
1 + · · · ] + [5Y2

1Y2
2Y2

3Ŷ2
1]

+[Y6
1Ŷ1Ŷ2 + · · · ] + [Y5

1Y2Ŷ1Ŷ2 + · · · ]

+[2Y4
1Y2

2Ŷ1Ŷ2 + · · · ] + [3Y4
1Y2Y3Ŷ1Ŷ2 + · · · ]

+[2Y3
1Y3

2Ŷ1Ŷ2 + · · · ] + [4Y3
1Y2

2Y3Ŷ1Ŷ2 + · · · ]

+[6Y2
1Y2

2Y2
3Ŷ1Ŷ2]. (102)

The generating function F ′ (Eq. 102) contains terms for
achiral sub-proligands (Y1, Y2, and Y3) only. This should be
compared with the generating function F (Eq. 77 of Exam-
ples 6, 7) which contains terms for both chiral and achiral
sub-proligands.

For example, the stereoisomers corresponding to the term
6Y2

1Y2
2Y2

3Ŷ1Ŷ2 have been already depicted in Fig. 4. Among
the six stereoisomers (Fig. 4), the two achiral isomers (6 and
7) correspond to the achiral trihydroxyglutaric acids (1 and
2), when we place Y1 = OH, Y2 = COOH, Y3 = H, Ŷ1 = OH,
and Ŷ2 =H. On the other hand, the pair of 8/8 corresponds to
the pair of 3 and 3. ��

3.4 Other previous methods as special cases of Theorem 7

3.4.1 On Pólya’s corona

Pólya’s corona was introduced in his famous article [7,8] to
solve enumeration problems of nonrigid molecules due to
rotations around bonds. As proved in Part 2 of this series

[11], Pólya’s corona is concerned only with the enumeration
of graphs but not with the enumeration of chemical struc-
tures. This point is further confirmed by considering Pólya’s
corona as a special case of Theorem 7. Thus, eSIs (Eqs. 78–
80) are reduced into a dummy variable ψk without chirality
fittingness:

ψk = CI(Ĥ; skd), (103)

where SIs (Eqs. 31–33) are reduced into a dummy variable sk
without chirality fittingness. The eCI–CF of Eq. 81 is reduced
into a format without chirality fittingness and the dependence
on α:

eCI(Ĝ;ψk) = 1

|Ĝ|
∑

G∈Ĝ

ψ
µ1(G)
1 ψ

µ2(G)
2 · · ·ψµr(G)

(r) . (104)

The intermediate cycle index CI–CF′(Ĝ[Ĥ]; $d) is also re-
duced into the following format:

CI′(Ĝ[Ĥ]; sd) = eCI(Ĝ;ψk). (105)

This means that only achiral ligands (or proligands or sub-
proligands) are taken into consideration in Pólya’s Corona.
The following example clarifies this situation.

Example 9 (Enumeration of nonrigid isomers as graphs. An
example for Pólya’s corona as a special case of Theorem 6)

The same problem as described in Example 7 is solved
by virtue of Pólya’s Corona as a special case of Theorem 6.

According to Eq. 104, the eCI–CF(C2v[C3v,C∞v];ψ($)k)
shown in Eq. 84 is converted into the following reduced form:

eCI(C2v;ψk) = 1

4

{

(ψ
(1)
1 )2(ψ

(2)
1 )2 + (ψ

(1)
2 )(ψ

(2)
2 )

+ (ψ
(1)
1 )2(ψ

(2)
2 )+ (ψ

(1)
2 )(ψ

(2)
1 )2

}

. (106)

In place of Eqs. 85–88, the ψk (Eq. 103) for the orbit O1 is
calculated as follows:

ψ
(1)
k = 1

6
(s
(1)
k )

3 + 1

3
s
(1)
3k + 1

2
(s
(1)
k )(s

(1)
2k ). (107)

In place of Eqs. 85–88, the ψk (Eq. 103) for the orbit O2 is
calculated as follows:

ψ
(2)
k = s

(2)
k (108)

Introduction of Eqs. refe107 and 108 into Eq. 106 gives the
intermediate cycle index as follows:

CI′(C2v[C3v,C∞v]; $d)

= 1

144
(s
(1)
1 )6(s

(2)
1 )2 + 1

36
(s
(1)
1 )3(s

(1)
3 )(s

(2)
1 )2

+ 1

24
(s
(1)
1 )4(s

(1)
2 )(s

(2)
1 )2 + 1

36
(s
(1)
3 )2(s

(2)
1 )2

+ 1

12
(s
(1)
1 )(s

(1)
2 )(s

(1)
3 )(s

(2)
1 )2 + 1

16
(s
(1)
1 )2(s

(1)
2 )2(s

(2)
1 )2

+ 1

24
(s
(1)
2 )3(s

(2)
2 )+ 1

12
(s
(1)
6 )(s

(2)
2 )

+1

8
(s
(1)
2 )(s

(1)
4 )(s

(2)
2 )+ 1

144
(s
(1)
1 )6(s

(2)
2 )
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+ 1

36
(s
(1)
1 )3(s

(1)
3 )(s

(2)
2 )+ 1

24
(s
(1)
1 )4(s

(1)
2 )(s

(2)
2 )

+ 1

36
(s
(1)
3 )2(s

(2)
2 )+ 1

12
(s
(1)
1 )(s

(1)
2 )(s

(1)
3 )(s

(2)
2 )

+ 1

16
(s
(1)
1 )2(s

(1)
2 )2(s

(2)
2 )+ 1

24
(s
(1)
2 )3(s

(2)
1 )2

+ 1

12
(s
(1)
6 )(s

(2)
1 )2 + 1

8
(s
(1)
2 )(s

(1)
4 )(s

(2)
1 )2. (109)

Since this example does not take account of inner structures
of objects, we use the following inventory:

s
(1)
d = Yd

1 + Yd
2 + Yd

3 . (110)

for the orbit O1 and the other inventory:

s
(2)
d = Ŷd

1 + Ŷd
2 . (111)

for the orbit O2. The inventories (Eqs. 110 and 111) are in-
troduced into Eq. 109 and the resulting equation is expanded
to give the following generating function:

F ′′ = [Y6
1Ŷ2

1 + · · · ] + [Y5
1Y2Ŷ2

1 + · · · ] + [2Y4
1Y2

2Ŷ2
1 + · · · ]

+[2Y4
1Y2Y3Ŷ2

1 + · · · ] + [2Y3
1Y3

2Ŷ2
1 + · · · ]

+[3Y3
1Y2

2Y3Ŷ2
1 + · · · ] + [4Y2

1Y2
2Y2

3Ŷ2
1]

+[Y6
1Ŷ1Ŷ2 + · · · ] + [Y5

1Y2Ŷ1Ŷ2 + · · · ]

+[2Y4
1Y2

2Ŷ1Ŷ2 + · · · ] + [2Y4
1Y2Y3Ŷ1Ŷ2 + · · · ]

+[2Y3
1Y3

2Ŷ1Ŷ2 + · · · ] + [3Y3
1Y2

2Y3Ŷ1Ŷ2 + · · · ]

+[4Y2
1Y2

2Y2
3Ŷ1Ŷ2]. (112)

It is worthwhile to compare between the generating func-
tions F ′ (Eq. 102) and F ′′ (Eq. 112), where different coeffi-
cients appear at the following terms in the generating
functions.

5 : 4 for the term Y2
1Y2

2Y2
3Ŷ2

1

3 : 2 for the term Y4
1Y2Y3Ŷ1Ŷ2

4 : 3 for the term Y3
1Y2

2Y3Ŷ1Ŷ2

6 : 4 for the term Y2
1Y2

2Y2
3Ŷ1Ŷ2. (113)

Among them, stereoisomers for the term Y2
1Y2

2Y2
3Ŷ1 Ŷ2

have been depicted in Fig. 4. The value 6 in F ′ (Eq. 102)
corresponds to two achiral isomers (6 and 6) and four pairs
of enantiomers (8/8, 9/9, 10/10, and 11/11). On the other
hand, two achiral isomers (6 and 6) and one pair of enanti-
omers (8/8) coalesce into one graph and the remaining three
pairs of enantiomers (9/9, 10/10, and 11/11) represent three
graphs in F ′′ (Eq. 112). Thus, the value 4 in F ′′ (Eq. 112)
corresponds to four graphs. ��

Example 9 exemplifies the limitations of Pólya’s theorem
and Pólya’s corona, which still remain in the same situation
as the 1870s of “proto”-stereochemistry when the two achi-
ral isomers (6 and 7) and one pair of enantiomers (8/8) were
not discriminated in a rational way. See the stereoisomers of
trihydroxyglutaric acid discussed in Fig. 1.

3.4.2 On chemical identity groups by Ugi el al.

The concept of chemical identity groups proposed by Ugi
et al. [5] can be regarded as further simplified cases from the
present point of view. Thus, the dummy variable (Eq. 103),
which has been obtained by starting from the eSIs (Eqs. 78–
80), is further reduced into a dummy variable φk ,

φk = CI(Ĥ
′; skd), (114)

where the achiral group H is replaced by the maximum chi-
ral subgroup H′. The eCI (Eq. 104), which has been derived
from the eCI–CF of Eq. 81, is further reduced into a format:

eCI(Ĝ
′;φk) = 1

|Ĝ′|
∑

G∈Ĝ
′
φ
µ1(G)
1 φ

µ2(G)
2 · · ·φµr(G)(r) , (115)

where the Ĝ of Eq. 104 is replaced by its maximum chiral sub-
group Ĝ

′
. The intermediate cycle index (Eq. 105), which is

obtained from CI–CF′(Ĝ[Ĥ]; $d) (Eq. 82), is further reduced
into the following format:

CI′(Ĝ′
[Ĥ

′
]; sd) = eCI(Ĝ

′;φk). (116)

The enumeration based on Eq. 116 is equivalent to the
enumeration based on the concept of chemical identity groups
proposed by Ugi et al. [5], as exemplified by the following
example.

Example 10 (Enumeration of nonrigid isomers under the ac-
tion of chiral point groups) The same problem as described in
Examples 7 and 9 is solved by virtue of the further simplified
method described above. Because the point group C2 is con-
sidered in place of C2v , we take account of the permutation
group:
{(1)(2)(3)(4), (1 2)(3 4)},
which governs O1 = {x1, x2} and O2 = {x3, x4}. Hence,
Eq. 115 for the present treatment is calculated to be:

eCI′(C2;φk)
= 1

2

{

(φ
(1)
1 )2(φ

(2)
1 )2 + (φ

(1)
2 )(φ

(2)
2 )
}

. (117)

To enumerate methyl ligands, we use C3 in place of C3v .
According to Eq. 114, we obtain the following equation for
O1:

φ
(1)
k = 1

3
(s
(1)
k )

3 + 2

3
s
(1)
3k , (118)

in place of Eq. 107. In place of Eqs. 108, the φk (Eq. 114) for
the orbit O2 is calculated as follows:

φ
(2)
k = s

(2)
k . (119)

The introduction of Eqs. 118 and 119 into Eq. 117 gives the
intermediate cycle index as follows:

CI′(C2[C3,C∞]; sd)
= 1

18
(s
(1)
1 )6(s

(2)
1 )2 + 2

9
(s
(1)
1 )3(s

(1)
3 )(s

(2)
1 )2

+2

9
(s
(1)
3 )2(s

(2)
1 )2 + 1

6
(s
(1)
2 )3(s

(2)
2 )

+1

3
(s
(1)
6 )(s

(2)
2 ). (120)
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Because this example does not take account of inner struc-
tures of objects, we can use the following inventory:

s
(1)
d = Yd

1 + Yd
2 + Yd

3 (121)

for the orbit O1 and the other inventory:

s
(2)
d = Ŷd

1 + Ŷd
2 (122)

for the orbit O2. The inventories (Eqs. 121 and 122) are intro-
duced into Eq. 120 and the resulting equation is expanded to
give the following generating function:

F ′′′ = [Y6
1Ŷ2

1+· · · ]+[Y5
1Y2Ŷ2

1 + · · · ]+[2Y4
1Y2

2Ŷ2
1 + · · · ]

+[3Y4
1Y2Y3Ŷ2

1 + · · · ] + [2Y3
1Y3

2Ŷ2
1 + · · · ]

+[4Y3
1Y2

2Y3Ŷ2
1 + · · · ] + [6Y2

1Y2
2Y2

3Ŷ2
1]

+[Y6
1Ŷ1Ŷ2 + · · · ] + [2Y5

1Y2Ŷ1Ŷ2 + · · · ]

+[3Y4
1Y2

2Ŷ1Ŷ2 + · · · ] + [6Y4
1Y2Y3Ŷ1Ŷ2 + · · · ]

+[4Y3
1Y3

2Ŷ1Ŷ2 + · · · ] + [8Y3
1Y2

2Y3Ŷ1Ŷ2 + · · · ]

+[10Y2
1Y2

2Y2
3Ŷ1Ŷ2]. (123)

The coefficient 10 of the term Y2
1Y2

2Y2
3Ŷ1Ŷ2 appearing

in F ′′′ (Eq. 123) shows the presence of ten isomers, which
have been already depicted in Fig. 4. It should be noted that
each of the ten stereoisomers depicted in Fig. 4 is counted as
one isomer in terms of the generating function F ′′′ (Eq. 123).
This result should be compared with F ′ (Eq. 102) and F ′′
(Eq. 112). ��

It should be pointed out that an essentially equivalent
equation to Eq. 120 can be alternatively obtained by using
the chemical identity group S17a of order 18 and degree 8,
which was reported by Ugi et al. [5, page 146]. They enu-
merated isomers of trihydroxyglutaric acid on the basis of
the concrete form of S17a for a propane skeleton with eight
positions. The procedure described in Example 10 is simpler
and more straightforward than the procedure of Ugi et al. [5]
because the former can omit the involvement of the concrete
form of the chemical identity group S17a. In order to examine
stereoisomeric equivalences, Ugi et al. [5] took account of
a further permutation group of order 144 (called “the group
of constitution preserving ligand permutations”), which con-
tains the group S17a as its subgroup. The action of the permu-
tation group of order 144, however, can be replaced by the
generating-function method described in Example 10. For
the order 144, see Eq. 109 of Example 9, which indicates
that “the group of constitution preserving ligand permuta-
tions” is equivalent to the group of graph enumeration. It
should be emphasized that Examples 9 and 10 are special
cases of Theorem 7.

3.4.3 Superiority of the proligand method

As exemplified by Example 10, the use of “chemical identity
groups” is equivalent to the use of chiral point groups. As
exemplified by Examples 9 and 10, the use of “the groups
of constitution preserving ligand permutations” is equivalent

to the use of graphs. It follows that the combined use of the
two types of groups [5] did not take account of reflection
operations which should play an important role as key oper-
ations to judge stereochemical relationships such as enantio-
meric ones. The judgement by reflection operations was not
explicitly formulated in the combined use of the two types
of groups [5], although enantiomeric relationships should be
judged in terms of reflection operations. Strictly speaking,
the combined use of the two types of groups determines ste-
reoisomeric relationships only, where an additional manual
judgement by reflection operations is necessary to decide
whether the stereoisomeric relationships are enantiomeric
ones or diastereomeric ones. In fact, the permutability of lig-
ands was used to judge the stereoisomeric relationships in
the approach by Ugi et al. [5], where the ligands are regarded
as structureless objects.

On the other hand, the proligand approach described in
the present paper provides us with Theorems 6 and 7, in which
reflection operations are taken into explicit consideration. In
order to demonstrate the merit of proligand approach, it is
worthwhile to compare the CI′ (Eq. 120) of Example 10 with
the intermediate cycle index CI–CF′ (Eq. 93) of Example 7.
Obviously, the terms (sd ) of Eq. 120 appear as hemispheric
terms (bd ) in Eq. 93, while the remaining terms of Eq. 93 are
concerned with homospheric or enantiospheric orbits (ad or
cd ). This fact reveals the feature of the concept of chemical
identity groups by Ugi et al. [5], so that the chemical identity
groups lack the sphericity concept of the present approach.
This means that the concept of chemical identity groups treats
chirality phenomena in terms of permutability of ligands.
Such a treatment may cause confusion with respect to the
relationship between chirality and stereogenicity, as recently
demonstrated by Fujita [13–15].

4 Conclusions

The proligand approach for enumerating nonrigid stereoiso-
mers, which was reported in Part 2 of this series [11], is
extended to be capable of treating general cases. One of
the extended points is the use of different sets of spheric-
ity indices to treat one or more orbits contained in skele-
tons and proligands. Another one of the extended points is
to take account of chirality in proligands and sub-proligands.
Thereby, several theorems for enumerating nonrigid stereoi-
somers are proved generally and applied to the stereoisom-
erism of trihydroxyglutaric acid. Among them, Theorem 6
stems from the scheme “positions of a skeleton ⇐ proli-
gands ⇐ ligands (positions of a ligand ⇐ sub-proligands)”,
while Theorem 7 stems from the scheme “(positions of a
skeleton ⇐ proligands ⇐ ligands (positions of a ligand)) ⇐
sub-proligands”. The theorems reveal in what Pólya’s theo-
rem and other previous methods are deficient.
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